GEISHA/GLEON Storm-blitz: A collaborative project to better understand the responses of phytoplankton to meteorologically-induced variability in water column stability

Orlane Anneville¹, Jonathan Doubek², Vijay Patil³, Jason Stockwell², Chun-Wei Chang^{4,5}, Viet Tran-Khac¹, Gaël Dur⁶, Peeter Nõges⁷, Tamar Zohary⁸, James Rusak ⁹, Shin-ichiro S. Matsuzaki¹⁰, Piet Verburg¹¹, Patrick Venail¹², Stephen J. Thackeray¹³, Lars Gosta Rudstam¹⁴, Stéphan Jacquet¹, Alon Rimmer⁸ and GEISHA/Storm-blitz contributors¹⁵

- There is concern about the impacts of extreme climatic events upon lake ecosystems
- Storms mix the water column and deliver sediments from watersheds, which can impact phytoplankton
- Limited understanding of how storms alter phytoplankton communities
- The GEISHA project provides room and time for an international team to work on this question

CHALLENGES

- Rarity of events \rightarrow correlative approaches problematic
- Need to disentangle the effect of confounding factors (eg. seasonality)
- Short-term predictability of impacts may require high-frequency monitoring, but not yet available for phytoplankton taxonomic composition
- No universal definition of storm: climatological versus impact-related definitions \rightarrow complicates comparisons among studies

ADVANTAGES of a Collaborative Research Team Strategy

- Long-term data-sets provide better coverage of storm events and better discrimination of storm effects from seasonal variability
- Large number of lakes facilitates across lake comparisons
- Interdisciplinary team \rightarrow integrate skills, expertise, and ideas to test hypotheses of mechanistic links from physico-chemical properties to biological processes

Global Evaluation of the Impacts of Storms on freshwater Habitat and structure of phytoplankton http://www.geisha-stormblitz.fr/

LARGE LAKES in GEISHA

WORKING HYPOTHESIS: Wind-induced mixing events select for phytoplankton species that are adapted to turbulent environments, thereby altering seasonal successions under thermally-stratified conditions.

OBJECTIVE OF THE PRESENT STUDY: Better understand the contribution of storm-induced hydrographic variability of the pelagic environment to changes in taxonomic composition and seasonal succession.

Within-PCA (R-package ADE) \rightarrow Describe the reference annual trajectory of changes in species composition (cf. Result 1/) METHOD 1)

Bourget

—Kinneret Oneida

Kasumigaura Geneva

* Life-traits: CSR

(Reynolds, 1988)

classification

- Pearson correlations \rightarrow Identify the hydrographic factors which drive the annual trajectory and its variability (cf. Result 2/) 2)
- Decision tree model \rightarrow Evaluate the link between wind-induced changes in physical conditions and alteration in successions (cf. Result 3/) 3)

Average annual trajectories of phytoplankton species

Inter-lake comparisons of average annual trajectories on axis 1 Life-traits*: S (33%), SR (33%), CR ² (33%), C (33%)

Percentage of « Storm events »* after which the phytoplankton annual trajectory was disturbed and returned to a community composition characterized by species presenting life-traits of CR

and **R** strategists

* Storm events: meteorologically-induced events which result in a decrease in Max_bv and increase in Zbv m

Powell Center

≊USGS

CONCLUSIONS: i) Water stability: important driver of seasonal changes in most of the lakes – ii) Drivers of within-month variability are month and lake dependent – iii) Decrease in stability and depth of maximum buoyancy frequency is likely to set back community to a previous stage, especially when summer community is not well established

Acknowledgements: We thank the CESAB and USGS Powell Center for their support and numerous data providers (see http://www.geisha-stormblitz.fr)

1 - INRA, UMR CARRTEL, France, 2- Rubenstein Ecosystem Science Laboratory, University of Vermont, USA, 3- US Geological Survey, University of Alaska Fairbanks, USA, 4- Research Center for Environmental Changes, Academia Sinica, Taiwan, 5- National Central University, Taiwan, 6- Creative Science Course (Geosciences), Faculty of Science, Shizuoka University, Japan, 7- Estonia, 8- Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, 9- Ontario Ministry of the Environment and Climate Change, Canada, 10- Center for Environmental Biology & Ecosystem Studies, National Institute of Water and Atmospheric Research, New Zealand, 12- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland., 13- Centre for Ecology & Hydrology, UK, 14- Cornell Univeristy, USA, 15 - GEISHA/Storm-blitz contributors: http://www.geisha-stormblitz.fr/