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* There is concern about the impacts of extreme climatic events upon lake ecosystems

e Storms mix the water column and deliver sediments from watersheds, which can impact phytoplankton

e Limited understanding of how storms alter phytoplankton communities -y, -

* The GEISHA project provides room and time for an international team to work on this question R

CHALLENGES ADVANTAGES of a Collaborative Research Team Strategy

e Rarity of events - correlative approaches problematic * Long-term data-sets provide better coverage of storm events and

* Need to disentangle the effect of confounding factors (eg. seasonality) better discrimination of storm effects from seasonal variability

* Short-term predictability of impacts may require high-frequency monitoring, @ ¢ Large number of lakes facilitates across lake comparisons
but not yet available for phytoplankton taxonomic composition * Interdisciplinary team — integrate skills, expertise, and ideas to test

* No universal definition of storm: climatological versus impact-related hypotheses of mechanistic links from physico-chemical properties to
definitions - complicates comparisons among studies biological processes

@ LARGE LAKES in GEISHA
http://www.geisha-stormblitz.fr/
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WORKING HYPOTHESIS: Wind-induced mixing events select for phytoplankton species that are adapted to turbulent environments, thereby altering
seasonal successions under thermally-stratified conditions.

OBJECTIVE OF THE PRESENT STUDY: Better understand the contribution of storm-induced hydrographic variability of the pelagic environment to changes in
taxonomic composition and seasonal succession.

METHOD 1) Within-PCA (R-package ADE) - Describe the reference annual trajectory of changes in species composition (cf. Result 1/)
2) Pearson correlations = ldentify the hydrographic factors which drive the annual trajectory and its variability (cf. Result 2/)
3) Decision tree model - Evaluate the link between wind-induced changes in physical conditions and alteration in successions (cf. Result 3/)
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ConcLUsIONS: i) Water stability: important driver of seasonal changes in most of the lakes — ii) Drivers of within-month variability are month and lake dependent —iii) Decrease
in stability and depth of maximum buoyancy frequency is likely to set back community to a previous stage, especially when summer community is not well established
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